第六百八十六章 铃木厚人:这个坑太小了,咱们把它挖大一点吧(下)(第3/6页)

(Tba)cd=δacδdb-1Nδabδcd,且满足对易关系[Tab,Tcd]=δcbTad-δadTcb。

从群参数数目来看。

SU(N+M)一共有(N+M)2-1个参数,而子群SU(N)SU(M)的群参数数目为:(N2-1)+(M2-1)=(N+M)2-1-(2NM+1)。

其中2NM个参数描写直和矩阵之外的非对角元,此时还剩有最后一个参数,用来描写对角矩阵。

这个参数的内容起点无法显示……咳咳,并不重要,重要的是另一个概念:

对角矩阵所属的群是独立的。

早先提及过无数次。

在规范场论中。

电磁力对应的是U(1)群,弱相互作用力对应SU(2)群,强相互作用力对应SU(3)群。

而在数学上。

U(1)其实就是复平面上的一个矢量C=re^(iθ)保持模长不变的变换,即e^(iα)乘以C的变换。可以说,U(1)的常用表示就是e^(iα)。

其中α叫连续参数,这里是转动变换的角度。e指数上除了α还有一个i,叫这种变换的生成元。

所以U(1)也可以看成矢量不变,而复数坐标系方向的选择有任意性,这些坐标系之间的变换关系。

SU(2)就是复平面上的两个矢量(即两个复数),保持模长平方和不变的变换,要求变换矩阵的行列式

为1,于是要求生成元的迹必然为0。这复平面上的两个矢量,可以看成一个4维实空间中的矢量,投影到两个平面上的投影矢量,每个平面上的投影矢量都对应一个独立的复数,两个投影矢量画在一个复平面上,就是上一段落所述的二维复矢量的来源。

当4维空间中的一个矢量纯转动时,它的两个投影矢量即两个复数将保持模长平方和不变做各种变换,这种变换就是SU(2),常用表示的生成元是泡利矩阵。

SU(3)则是复平面上3个矢量保持模长平方的和的不变的各种变换,它的生成元常用表示是盖尔曼矩阵。

也就是这个矩阵如果在某种情况下支持U(1)群的数学表示,那么它就无法在SU(2)群和SU(3)群的情景下成立。

这就好比是一个地球人。

他能在地球的环境下安稳生存,那么就绝不可能在没有任何外部措施的情况下在冥王星上存活。

因为冥王星上的温度、气压、含氧量和地球完全是不一样的,想要在冥王星上生存也可以,但是必须要配合其他一些装备——也就是在其他群的情境下更换表达式。

当然了。

如果你是体育生的话另说,毕竟体育生是可以硬抗核聚变的。

但眼下汤川秀树……或者说铃木厚人发现的这个情况却有些特殊。

根据赵忠尧等人在论文中的计算显示。

对于SU(N+M)群的约化,他们主要通过使用杨图[ω]标记的杨算符Y[ω]作用在其张量空间得到。

经过严格的讨论(这里忽略讨论过程)最终可以得到一个结果:

在Y[ω]投影构成的张量空间中,有属于子群SU(N)SU(M)不可约表示[λ]×[μ]的子空间,即在表示[ω]关于子群的分导表示约化中出现子群表示[λ]×[μ]。

这属于对角矩阵在SU(3)群的某种表示,整个推导过程汤川秀树没有发现任何问题。

但问题是……

在引入了中微子的那个额外项后,这个对角矩阵的三个杨图[ω],[λ]和[μ]的行数都小于了N+M,N和M。

这代表了在这个框架下,数学层面可以用左手场ψLc代替右手场ψR,且可以看出ψLc所属的表示与ψR所属的表示互为复共轭。

用人话来说就是……

对角矩阵不需要太过变化,就能在SU(2)群成立了。

用上头的例子来描述,就是一个地球人在没有任何外力的情况下在冥王星上活了下来。

这tmd就很离谱了……